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Tutorial OutlineTutorial Outline

■ 8:30 a.m. - 12:00 p.m.
● Introduction to Biology
● Overview Computational Biology
● DNA sequences

■ 1:30 p.m. - 5:00 p.m.
● Protein Sequences
● Phylogeny
● Specialized Databases
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Tutorial Outline:Tutorial Outline:
AfternoonAfternoon

■ 1:30 p.m. - 2:00 p.m. Working with Proteins

■ 2:00 p.m. - 3:00 p.m. Phylogeny

■ 3:00 p.m. - 3:30 p.m. BREAK

■ 3:30 p.m. - 4:30 p.m. Specialized Databases

■ 4:30 p.m. - 5:00 p.m. Genetic Networks



ProteinsProteins

Manfred Zorn
MDZorn@lbl.gov

NERSC
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What is a protein?

A biopolymer which is distinct from a heteropolymer in one very important way

It’s 3-D structure is uniquely tailored to perform a specific function

NMR, X-ray and electron crystallography solve structures slowly (1/2-3 yrs.)

Alanine

Proline

Threonine

Tryptophan

Isoleucine
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The “Beads” are ChemicallyThe “Beads” are Chemically
Complex StructuresComplex Structures

Leucine (NALA)

Glycine (NAGA)

Glutamine (NAQA)
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Force between pair of atoms
is the same in isolation or
when part of a big molecule

Force between pair of atoms
is the same in isolation or
when part of a big molecule

Forces Between AtomsForces Between Atoms

■ Basic assumptions:
✔ Energy contributions are strictly additive
✔ Energy is independent of neighbors; transferability
✔ Quantum mechanics is insignificant as long as no bonds

are broken
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Bond Stretching ForcesBond Stretching Forces

bb

U b( ) = Kb b − b0( )2

Equilibrium length ~ 0.1-0.2nm

Kb spring force constant ~
500kcal/mole Å2
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Bond Angle ForcesBond Angle Forces

U( ) = K − 0( )2 Kθ spring force constant

θ0
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Bond Twisting ForcesBond Twisting Forces

U Φ( ) = KΦ 1− cos nΦi +( )[ ]

60°

E
ne

rg
y

180° -60°

Φ

Φ Torsion Angle
KΦ ~ 2kcal/mole
N = 2,3,6 by symmetry
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Hydrogen BondsHydrogen Bonds
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E
ne

rg
y

Repulsion N-O & H-C

Attraction H-O & N-C

Total Energy

Optimum distance for N-O = 0.3nm
Net interaction ~ -5kcal/mole



Computational Biology @ SC 2000

Scale of InteractionsScale of Interactions

Interaction Energy
(kcal/mole)

Van der Waals (in water) -0.1   

Hydrogen bond (in water) -1.0

Torsion barrier (single bond) ~+3.0

Torsion barrier (double bond) +20.0

Bond breakage +100.0

Change bond angle by 10° +2.0

Stretch bond length by 10pm (0.1Å) +2.5

Thermal energy 300K 0.6
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Aromatic Amino AcidsAromatic Amino Acids
Amino Acid pKa's

2    Pro Structure3    Chemical Structure4    3-D Structure5    

Phenylalanine, Phe, F

No charge

absorbs UV

hydrophobic (2.5)

Molec. Wt. = 147

Mole % = 3.5

N=9.13

C=1.83

 

pI=5.48

a =1.16

ß =1.33

t =0.59

Tyrosine, Tyr, Y

weak charge

absorbs UV

hydrogen bonding

not hydrophilic (0.08)

 

Molec. Wt. = 163

Mole % = 3.5

N=9.11

C=2.20

R=10.07

 

pI=5.66

a =0.74

ß =1.45

t =0.76

Tryptophan, Trp, W

largest amino acid

rarest amino acid

no charge

absorbs UV

hydrogen bonding

hydrophobic (1.5)

 

Molec. Wt. = 186

Mole % = 1.1

N=9.39

C=2.38

 

pI=5.89

a =1.02

ß =1.35

t =0.65

Copyright©     Charles S. Gasser    1996



Computational Biology @ SC 2000

Protein StructureProtein Structure
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Secondary StructureSecondary Structure

■ Alpha-helix

■ Beta-sheet

■ Coil
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Alpha HelixAlpha Helix

■ Alpha-helix
✔ Right-handed alpha helix
✔ 3.6 amino acids per turn
✔ Most abundant (35%)

■ Alpha-helix
✔ Right-handed alpha helix
✔ 3.6 amino acids per turn
✔ Most abundant (35%)
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Alpha HelixAlpha Helix

Human Myoglobin 1rseHuman Myoglobin 1rse
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Beta-SheetBeta-Sheet

■ Beta-sheet
✔ Parallel - antiparallel
✔ 25% of proteins

■ Beta-sheet
✔ Parallel - antiparallel
✔ 25% of proteins
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Beta sheetsBeta sheets

Human Rhinovirus Protease 3C 1cqqHuman Rhinovirus Protease 3C 1cqq
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SCOP:  StructuralSCOP:  Structural
Classification of ProteinsClassification of Proteins

■ 1. All alpha proteins (a)
■ 2. All beta proteins (b)
■ 3. Alpha and beta proteins (a/b)

✔ Mainly parallel beta sheets (beta-alpha-beta units)

■ 4. Alpha and beta proteins (a+b)
✔ Mainly antiparallel beta sheets (segregated alpha and beta regions)

■ 5. Multi-domain proteins (alpha and beta)
✔ Folds consisting of two or more domains belonging to different classes

■ 6. Membrane and cell surface proteins and peptides
✔ Does not include proteins in the immune system

■ 7. Small proteins
✔ Usually dominated by metal ligand, heme, and/or disulfide bridges

■ 8. Coiled coil proteins
■ 9. Low resolution protein structures
■ 10. Peptides
■ 11. Designed proteins



Computational Biology @ SC 2000

SCOP ClassificationsSCOP Classifications
 Class Number of folds Number of

superfamilies
Number of
families

All alpha proteins 128 197 296

All beta proteins 87 158 251

Alpha and beta
proteins (a/b)

93 153 323

Alpha and beta
proteins (a+b)

168 237 345

Multi-domain
proteins

25 25 32

Membrane and cell
surface proteins

11 17 19

Small proteins 52 72 102

Total 564 859 1368

SCOP: Structural Classification of Proteins. 1.53 release
11410 PDB Entries (1 Jul 2000).
26219 Domains.
Copyright © 1994-2000 The scop authors / scop@mrc-lmb.cam.ac.uk
September 2000

SCOP: Structural Classification of Proteins. 1.53 release
11410 PDB Entries (1 Jul 2000).
26219 Domains.
Copyright © 1994-2000 The scop authors / scop@mrc-lmb.cam.ac.uk
September 2000
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Protein Fold Recognition,Protein Fold Recognition,
Structure Prediction, and FoldingStructure Prediction, and Folding

■ Drawing analogies with known protein structures
✔ Sequence homology, Structural Homology
✔ Inverse Folding, Threading

■ Ab initio folding: the ability to follow kinetics, mechanism
✔ robust objective function
✔ severe time-scale problem
✔ proper treatment of long-ranged interactions

■ Ab initio prediction: the ability to extrapolate to unknown folds
✔ multiple minima problem
✔ robust objective function
✔ Stochastic Perturbation and Soft Constraints

■ Simplified Models that Capture the Essence of Real Proteins
✔ Lattice and Off-Lattice Simulations
✔ Off-Lattice Model that Connect to Experiments: Whole Genomes?
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Protein Fold Predictions: NeuralProtein Fold Predictions: Neural
Network Structure ClassificationsNetwork Structure Classifications

■ Protein fold predictor based on global
descriptors of amino acid sequence

■ Empirical prediction using a database of
known folds in machine learning

■ Databases
● 3D-ALI (83 folds)
● SCOP (used ~120 folds)

■ Representation of protein sequence in terms of
physical, chemical, and structural properties of
amino acids

■ Feed forward neural network for machine
learning
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Protein Fold
Recognition: Threading

Take a sequence with unknown structure and align onto structural template of a given fold
Score how compatible that sequence is based on empirical knowledge of protein structure
Right now 25-30% of new sequences can be assigned with high confidence to fold class

100,000's of sequences and 10,000's of structures (each of order 102-103amino acids long)

Sequence Assignments to
Protein Fold Topology
(David Eisenberg, UCLA)

Sequence Assignments to
Protein Fold Topology
(David Eisenberg, UCLA)
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Protein Fold Recognition:
Threading

Computational Approach:

Dynamic programming: capable of finding optimal alignments if

optimal alignments of subsequences can be extended to optimal alignments of whole

objective functions that are one-dimensional E=Σ Vi +Σ Vgap

Complexity: all to all comparison of sequence to structure scales as L2

Whole human genome: 1013 flops

Improve Objective function:

Take into account structural environment

3D 1D: dynamic programming, L2

Build pairwise or multi-body objective function

NP-hard if: variable-length gaps and model nonlocal effects such as distance
dependence

Recursive dynamic programming, Hidden markov models, stochastic grammers

Complexity: all to all comparison of sequence to structure scales as L3

Whole human genome: ~1016 flops
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Computational Protein
Folding

One microsecond simulation of a fragment of the protein, Villin.  (Duan & Kollman, Science 1998)One microsecond simulation of a fragment of the protein, Villin.  (Duan & Kollman, Science 1998)

robust objective function
all atom simulation with molecular water present: some structure present

severe time-scale problem
required 109 energy and force evaluations: parallelization (spatial decomposition)

proper treatment of long-ranged interactions
cut-off interactions at 8Å, poor by known simulation standards

Statistics (1 trajectory is anecdotal)
Many trajectories required to characterize kinetics and thermodynamics

ü

û
û

ü
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Computational Protein
Folding

(1) Size-scaling bottlenecks: Depends on complexity of energy function, V

Empirical (less accurate): cN2; ab initio (more accurate):CN3 or worse ;  c<<C

empirical force field used

“long-ranged interactions” truncated so cM2 scaling; M < N

spatial decomposition, linked lists

(2) Time-Scale of motions bottlenecks ( t)

 

Use timestep commensurate with fastest timescale in your system

bond vibrations: 0.01Å amplitude: 10-15 seconds (1fs)

Shake/Rattle bonds (2fs)

Multiple timescale algorithms (~5fs) (not used here)

  

ri t + ∆t( ) = 2ri(t) − ri t − ∆t( ) +
fi t( )
mi

∆t( )2

2!
+ O ∆t( )4[ ]; vi t( ) =

ri t + ∆t( ) − ri t − ∆t( )
2∆t

+ O ∆t( )3[ ]
fi = miai = −∇iV r1,r2 ,KrN( )
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 Protein Structure
Prediction

Primary Squence and an Energy function  Tertiary structure

Empirical energy functions:
(1) Detailed, Atomic description: leads to enormous difficulties!

(1) Multiple minima problem is fierce

Find a way to effectively overcome the multiple minima problem

(2) Objective Functions: Replaceable algorithmic component?

Global energy minimum should be native structure, misfolds higher in energy

VMM = kb
i

# Bonds

∑ bi − bo( )2 + k
i

# Angles

∑ i − o( )2 + k i − o( )
i

#Imprope r s

∑
2
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k
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The Objective (Energy)
Function

Empirical Protein Force Fields: AMBER, CHARMM, ECEPP
“gas phase”

CATH protein classification: http://pdb.pdb.bnl.gov/bsm/cath

-helical sequence/ -sheet structure -sheet sequence/a-helical structure

Energies the same! Makes energy minimization difficult!

Add penalty for exposing hydrophobic surface: favors more compact structures

Enative folds< Emisfolds for a few test cases

Solvent accessible surface area functions: Numerically difficult to use in optimization
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Neural Networks for 2
Structure Prediction

Input units represent amino acid
   sequence

Hidden units map sequence to structure

Output Units represent secondary
   structure class (helix, sheet, coil)

         Weights are optimizable variables that are trained on database of proteins

Poorly designed networks result in overfitting, inadequate generalization to test set

Neural network design

input and output representation

number of hidden neurons

weight connection patterns that detect structural features
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Neural Network Results
No sequence homology through multiple alignments

Train Test

Total predicted correctly = 66% Total predicted correctly = 62.5%

Helix:   51%    Ca=0.42 Helix:  48%   Ca=0.38

Sheet:   38%    Cb=0.39 Sheet:  28%   Cb =0.31

Coil:     82%    Cc =0.36 Coil:    84%   Cc  =0.35

Network with Design: Yu and Head-Gordon, Phys. Rev. E 1995

Train Test

Total predicted correctly = 67%  Total predicted correctly = 66.5%

Helix:   66%    Ca=0.52 Helix:  64%   Ca=0.48

Sheet:   63%    Cb=0.46 Sheet:  53%   Cb =0.43

Coil:     69%    Cc=0.43 Coil:    73%   Cc  =0.44

Combine networks of Yu and Head-Gordon with multiple alignments
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Neural Networks Used To Guide
Global Optimization Methods

Generate expanded tree of configurations
Predicted coil residues: generate random, dissimilar sets of φ0 and ψ0

Explore tree configuration in depth:

Global Optimization in sub-space of coil residues: walk through barriers, move downhill
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Hierarchical Parallel
Implementation of Global

Optimization Algorithm
 Static vs. Dynamic Load Balancing of Tasks

Central Processor

GOPT1 GOPT2 GOPT3 GOPT4 GOPT5

W1,1 W1,11 W2,1 W2,11 W3,1 W3,11 W4,1 W4,11 W5,1 W5,11

Central Processor: Assigns starting coordinates to GOPT’s

Task time is highly variable

GOPT’s: Divide up sub-space into N regions for global search

Task time is variable

Workers: Generate sample points; find best minimizer in region

(Number of workers depends on sub-space)

Dynamical load balancing of tasks:  reassigning GOPT/workers to GOPT/workers

Gain in efficiency of a factor of 5-10
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Global Optimization Predictions of
-Helical Proteins

Crystal (left), Prediction (right)
R.M.S.  7.0Å

Prediction  (left)  and  crystal (right)
R.M.S.  6.3Å

Still have not reached crystal energy yet!

2utg_A: 70aa α-chain of uteroglobin:

1pou: 72 aa DNA binding protein
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Simplified Models for
Simulating Protein Folding

Simplifies the “real” energy surface topology sufficiently that you can do
(1) Statistics 

Can do many trajectories to converge kinetics and thermodynamics
(2) severe time-scale problem

characterize full folding pathway: mechanism, kinetics, thermodynamics
(3) proper treatment of long-ranged interactions 

all interactions are evaluated; no explicit electrostatics
(4) robust objective function?

good comparison to experiments
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Structure-Based Drug DiscoveryStructure-Based Drug Discovery

Brian K. Shoichet, Ph.D
Northwestern University, Dept of MPBC

303 E. Chicago Ave, Chicago, IL 60611-3008
Nov 15, 1999
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Problems in Structure-BasedProblems in Structure-Based
 Inhibitor Discovery & Design Inhibitor Discovery & Design

■ Balance of forces in binding
● Energies in condensed phases

✔ interaction energies
✔ desolvation

■ Problem scales badly with degrees of freedom
● Configuration

✔ configs = (prot-features)4 X (lig-features)4

● Conformation
✔ Ligand & Protein, confs = 3lbonds  X 3pbonds

■ Sampling chemical space (scales very badly)
■ Defining binding sites
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The Pros & Cons of ProteinsThe Pros & Cons of Proteins

sulfate binding protein
18 - Crown-6

O

O

O

O

O
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Conserved Residues, OrderedConserved Residues, Ordered
Structure, Function UnknownStructure, Function Unknown
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Inhibitor Discovery orInhibitor Discovery or
Design?Design?

■ Design ligands
● Ludi (Bohm)
● Grow (Moon & Howe)
● Builder (Roe & Kuntz)
● MCSS-Hook (Miranker & Karplus)
● SMOG (DeWitte & Shaknovitch)
● Others...

■ Discover Ligands
● DOCK (Kuntz, et al., Shoichet)
● CAVEAT (Bartlett)
● Monte Carlo (Hart & Read)
● AutoDock (Goodsell & Olson)
● SPECITOPE (Kuhn et al)
● Others...
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Screening Databases byScreening Databases by
 Molecular Docking Molecular Docking
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Database Screening UsingDatabase Screening Using
DOCKDOCK

Database of commercially
available small molecules

Each molecule is fit into the binding site
in multiple orientations.
Multiple conformations of each ligand
are considered.

Each orientation is evaluated for
complementarity, using van der Waals
and electrostatic interaction energies.

Solvation energies are subtracted.

The inhibition constants of the best fitting
molecules are established in an enzyme assay

Inhibitor-receptor complex structures are determined.

New interactions with the enzyme are targeted.

binding site

…~200,000
compounds

N

N
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Novel Novel LigandLigand Discovery Discovery
 Using Molecular Docking Using Molecular Docking

Lead from Lead from
Receptor molecular docking Receptor molecular docking

HIV
protease
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Ligand Flexibility:Ligand Flexibility:
Conformational EnsemblesConformational Ensembles

Generate an ensemble dock it into the site
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Conformational EnsemblesConformational Ensembles
vsvs. Brute Force. Brute Force
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Hierarchical DockingHierarchical Docking

A

B

C Flexible docking: Hierarchical docking:
27 confs 27 confs
x3 atoms 3C + 3A + 9B 
81 atom positions 15 atom positions
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Unmet ChallengesUnmet Challenges

■ Better Scoring
● context dependent desolvation
● receptor desolvation
● better force-fields

■ Receptor Flexibility

■ Cominatorial Chemistry



Computational PhylogeneticsComputational Phylogenetics

Craig Stewart
stewart@iu.edu

Indiana University
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OutlineOutline

■ Evolution & Phylogenetics
■ Why is this an HPC problem?
■ Alignment (brief)
■ Summary of methods and software for phylogenetics
■ One example in detail: Maximum Likelihood  analysis with

fastDNAml
■ Some interesting results and challenges for the future
■ Caveat: this is an introduction, not an exhaustive review.
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PhylogenyPhylogeny

■ Evolution is an explicitly historical branch of biology,
one in which the subjects are active players in the
historical changes.

■ A phylogeny, or phylogenetic tree, is a way of depicting
evolutionary relationships among organisms, genes, or
gene products.

■ Modern evolutionary theory began with Darwin’s 
which included one figure – an evolutionary

tree
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Origin of Species, Figure 1Origin of Species, Figure 1
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Building PhylogeneticBuilding Phylogenetic
TreesTrees

■ Goal: an objective
means by which
phylogenetic trees can
be estimated in
tolerable amounts of
wall-clock time,
producing phylogenetic
trees with measures of
their uncertainty
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Basic EvolutionaryBasic Evolutionary
BiologyBiology

■ All evolutionary
changes are described
as bifurcating trees

● evolutionary
relationships among
genes or gene
products (trees of
paralogues)

● evolutionary
relationships among
organisms (trees of
orthologues)
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Why?Why?

■ Curiosity: Anyone who as a child wandered
through the dinosaur section of a natural
history museum understands the inherent
intellectual attraction of evolutionary biology

■ Theoretical uses: testing hypotheses in
evolutionary biology

■ Practical uses:
● Medicine
● Environmental management (biodiversity

maintenance)
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Reconstructing historyReconstructing history
from DNA sequencesfrom DNA sequences

■ DNA changes over time; much of this change is
not expressed

■ Changes in unexpressed DNA can be modeled
as Markov processes

■ By comparing similar regions of DNA from
different organisms (or different genes) one
can infer the phylogenetic tree and
evolutionary history that seems the best
explanation of the current situation
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DNA replicationDNA replication

Purines: Adenine & Guanine
Pyrimidines: Thymine & Cytosine
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Changes in geneticChanges in genetic
information over timeinformation over time

■ Point mutations
DNA – sequences of the 4 nucleotides

CCTCTGAC
vs

TCTCCGAC

Protein – sequences of the 20 amino acids
GSAQVKGHGKK

          vs
GNPKVKAHGKK

■ Insertions and deletions
DNA CCTCT+GAC

vs
CCTCTTGAC
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Sequences availableSequences available

■ DNA (sequences are series of the base
molecules; aligned sequences will also contain
+s for gaps)

■ Amino acid sequences (series of letters
indicating the 20 amino acids). Computational
challenges more severe than with DNA
sequences.

■ RNA
■ The availability of data at present exceeds the

ability of researchers to analyze it!
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Why is tree-building aWhy is tree-building a
HPC problem?HPC problem?

■ The number of
bifurcating unrooted
trees for n taxa is
(2n-5)!/ (n-3)! 2n-3

■ for 50 taxa the number
of possible trees is
~1074; most scientists
are interested in much
larger problems

■ The number of rooted
trees is (2n-5)!
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AlignmentAlignment

■ To build trees one compares and relates ‘similar’ segments of
genetic data. Getting ‘similar’ right is absolutely critical!

■ Methods:
● dynamic programming
● Hidden Markov Models
● Pattern matching

■ Some alignment packages:
● BLAST

http://www.ncbi.nlm.nih.gov/BLAST/
● FASTA

http://gcg.nhri.org.tw/fasta.html
● MUSCA

http://www.research.ibm.com/bioinformatics/home
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Matching cost functionMatching cost function

GCTAAATTC
++  x x

GC  AAGTT

■ Penalize for mismatches, for opening of gap,
and for gap length

■ This approach assumes independence of loci:
good assumption for DNA, some problems with
respect to amino acids, significant problems
with RNA
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Example of alignedExample of aligned
sequencessequences

Thermotoga ATTTGCCCCA GAAATTAAAG CAAAAACCCC AGTAAGTTGG GGATGGCAAA

Tthermophi ATTTGCCCCA GGGGTTCCCG CAAAAACCCC AGTAAGTTGG GGATGGCAGG

Taquaticus ATTTGCCCCA GGGGTTCCCG CAAAAACCCC AGTAAGTTGG GGATGGCAGG G

deinon ATTTGCCCCA GGGATTCCCG CAAAAACCCC AGTAAGTTGG GGATGGCAGG G

Chlamydi  ATTTTCCCCA GAAATTCCCG AAAAAACCCC AATAAATTGG GGATGGCAGG

flexistips ATTTTCCCCA CAAAAAAAAG AAAAAACCCC AGTAAGTTGG GGATGGCAGG

borrelia-b  ATTTGCCCCA GAAGTTAAAG CAAAAACCCC AATAAGTTGG GGATGGCAGG

bacteroide  ATTTGCCCCA GAAATTCCCG CAAAAACCCC AGTAAATTGG GGATGGCAGG GG

Pseudom ATTTGCCCCA GGGATTCCCG CAAAAACCCC AGTAAGTTGG GGATGGCAGG G

ecoli-----  GTTTTCCCCA GAAATTCCCG CAAAAACCCC AGTAAGTTGG GGATGGCAGG

salmonella ++++++++++++++++++++++++++++++++++++++++++++++++++++++++++

shewanella  GTTTGCCCCA GCCATTCCCG TAAAAACCCC AGTAAGTTGG GGATGGCAGG

bacillus--  ATTTGCCCCA GAAATTCCCG CAAAAACCCC AGCAAATTGG GGATGGCAGG G

myco-gentl  ATTTGCCCCG GAAATTCCCG CAAAAACCCC AGTAAGTTGG GGATGGCAAA
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PhylogeneticPhylogenetic
methodologiesmethodologies

■ Define a specific series of steps to produce the ‘best’
tree

● Pair-group cluster analyses
● Fast, but tend not to address underlying evolutionary

mechanisms
■ Define criteria for comparing different trees and judging

which is better. Two steps:
● Define the objective function (evolutionary biology)
● Generate and compare trees (computation)

■ All of the techniques described produce an unrooted
tree.

■ The trees produced likewise describe relationships
among extant taxa, not the progress of evolution over
time.
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Distance-based Tree-Distance-based Tree-
building methodsbuilding methods

■ Aligned sequences are compared, and analysis
is based on the differences between
sequences, rather than the original sequence
data.

■ Less computationally intensive than character-
based methods

■ Tend to be problematic when sequences are
highly divergent
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Distance-based TreeDistance-based Tree
building methods, 2building methods, 2

■ Cluster analysis. Most common variant is Unweighted Pair
Group Method with Arithmetic Mean (UPGMA) – join two
closest neighbors, average pair, keep going. Problematic when
highly diverged sequences are involved

■ Additive tree methods – built on assumption that the lengths
of branches can be summed to create some measure of overall
evolution.

● Fitch-Margoliash (FM) – minimizes squared deviation
between observed data and inferred tree.

● Minimum evolution (ME) – finds shortest tree consistent
with data

■ Of the distance methods, ME is the most widely implemented
in computer programs
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Character-basedCharacter-based
methodsmethods

■ Use character data (actual sequences) rather than distance
data

■ Maximum parsimony. Creates shortest tree – one with fewest
changes. Inter-site rate heterogeneity creates difficulties for
this approach.

■ Maximum likelihood. Searches for the evolutionary model that
has the highest likelihood value given the data. In simulation
studies ML tends to outperform others, but is also
computationally intensive.
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Rooting treesRooting trees

■ If the assumption of a constant molecular clock holds, then
the root is the midpoint of the longest span across the tree.

■ Sometimes done by including an ‘outgroup’ in the analysis
■ Remember that the trees produced from sequence data are

fundamentally different than a historical evolutionary tree
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Evaluating treesEvaluating trees

■ Once a phylogenetic tree has been produced by some means, how do
you test whether or not the tree represents evolutionary change, or
just the results of a mathematical  technique applied to a set of
random data? These methods below can be used to perform a
statistical significance test.

■ Significance tests for MP trees:
● Skewness tests. MP tree lengths produced from random

data should be symmetric; tree lengths produced from data
sets with real signal should be skewed.

■ Significance tests for distance, MP, and ML trees:
● Bootstrap. Recalculate trees using multiple samples from

same data with resampling.
● Jackknife. Recalculate trees using subsampling

■ All of these methods are topics of active debate
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Phylogenetic softwarePhylogenetic software

■ Phylip. (J. Felsenstein). Collection of software packages that
cover most types of analysis. One of the most popular
software collections. Free.

■ PAUP. (D. Swofford). Parsimony, distance, and ML methods.
Also one of the most popular software collections. Not free,
but not expensive.

■ PAML. (Ziheng Yang). Maximum likelihood methods for DNA
and proteins. Not as well suited for tree searching, but
performs several analyses not generally available. Free.

■ fastDNAml. (G. Olsen). Maximum likelihood method for DNA;
becoming one of the more popular ML packages. MPI version
available soon; well suited to tree searching in large data sets.
Free.
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More on MaximumMore on Maximum
Likelihood methodsLikelihood methods

■ Typical statistical inference:
calculate probability of data
given the hypothesis

■ Tree, branch lengths, and
associated likelihood values
all calculated from the data.

■ Likelihood values used to
compare trees and
determine which is best
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Stochastic change ofStochastic change of
DNADNA

■ Markov process, independent for each site: 4 x 4 matrix for
DNA, 20 x 20 for amino acids

A C G T
A p(A->A) p(A->C) p(A->G) …
C p(C->A) p(C->C) p(C->G) …
G .
T .
■ Transitions more probable than transversions.
■ Must account for heterogeneity in substitution rates among

sites (DNArates – Olsen)
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fastDNAmlfastDNAml

■ Developed by Gary Olsen
■ Derived from Felsensteins’s PHYLIP programs
■ One of the more commonly used ML methods
■ The first phylogenetic software implemented in a parallel

program (at Argonne National Laboratory, using P4 libraries)
■ Olsen, G.J.,et al.1994. fastDNAml: a tool for construction of

phylogenetic trees of DNA sequences using maximum
likelihood. Computer Applications in Biosciences 10: 41-48

■ MPI version produced in collaboration with Indiana University
will be available soon
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fastDNAml algorithmfastDNAml algorithm

■ Compute the optimal tree for three taxa (chosen randomly) -
only one topology possible

■ Randomly pick another taxon, and consider each of the 2i-5
trees possible by adding this taxon into the first, three-taxa
tree.

■ Keep the best (maximum likelihood tree)
■ Local branch rearrangement: move any subtree to a

neighboring branch (2i-6 possibilities)
■ Keep best resulting tree
■ Repeat this step until local swapping no longer improves

likelihood value
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Local branchLocal branch
rearrangement diagramrearrangement diagram



Computational Biology @ SC 2000

fastDNAml algorithmfastDNAml algorithm
con’t: Iteratecon’t: Iterate

■ Get sequence data for next taxon
■ Add new taxa (2i-5)
■ Keep best
■ Local rearrangements (2i-6)
■ Keep best
■ Keep going….
■ When all taxa have been added, perform a full tree

check
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Overview of parallelOverview of parallel
program flowprogram flow
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Because of localBecause of local
effects….effects….

■ Where you end up sometimes depends on where you start
■ This process searches a huge space of possible trees, and is

thus dependent upon the randomly selected initial taxa
■ Can get stuck in local optimum, rather than global
■ Must do multiple runs with different randomizations of taxon

entry order, and compare the results
■ Similar trees and likelihood values provide some confidence,

but still the space of all possible trees has not been searched
extensively
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Performance of fastDNAmlPerformance of fastDNAml
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Applications &Applications &
Interesting examplesInteresting examples

■ Better understanding of evolution
(Ceolocanths, cyanobacterial origin of plastids)

■ Maintenance of biodiversity
■ Medicine & molecular biology

● our cousins, the fungi
● Cytoplasmic coat proteins
● HIV
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Cytoplasmic CoatCytoplasmic Coat
ProteinsProteins
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HIVHIV

■ Where did HIV come from, and how recent is it?
■ Korber, et al. 2000. Timing the ancestor of the HIV-1 pandemic

strains. Science 288:1789. (Online at
www.sciencemag.org/cgi/content/full/288/5472/1789)

■ Used completed HIV sequences from 159 individuals with known
sampling dates (including one from 1959)

■ Used a general-reversible (REV) base substitution model, accounting
for different site-specific rates of evolution and base frequencies
biased in favor of adenosine. Used modified version of fastDNAml.

■ Used SIV as an outgroup
■ Last common ancestor of main group of HIV-1 was 1931 (95%

confidence interval: 1915-1941). Supports hypothesis that HIV has
been around for some time and simply took a while to be common
enough to be noticed.
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Challenges for futureChallenges for future

■ HPC implementations of more phylogenetic techniques
■ Better treatment of insertions and deletions (indels)
■ Algorithms for more thorough searching of treespaces in

incremental tree building processes (keep best n trees and
keep looking)

■ Techniques for not shaking the whole tree (that is, adding a
taxa to a tree in a fashion that acknowledges damping of
effect as you travel away from altered part of tree)

■ Use of high-throughput techniques
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URLs for phylogeneticURLs for phylogenetic
softwaresoftware

■ Phylip
evolution.genetics.washington.edu/phylip/software.html

■ PAUP
www.lms.si.edu/PAUP/index.html

■ PAML
abacus.gene.ucl.ac.uk/software/paml.html

■ fastDNAml
geta.life.uiuc.edu/~gary/
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Specialized biological databasesSpecialized biological databases
and their role in building modelsand their role in building models

of regulationof regulation
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Overview of alternativeOverview of alternative
splicingsplicing

■ What is alternative splicing?

■ What is possible to do computationally to 
better understand this complicated 
phenomenon?
● Frequency of alternative splicing
● Specialized databases
● Search for regulatory elements
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PROCESSING PROCESSING mRNAmRNA
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The Nobel Prize inThe Nobel Prize in
Physiology or Medicine 1993Physiology or Medicine 1993

The Nobel Assembly at the Karolinska Institute in Stockholm,
Sweden, has awarded the Nobel Prize in Physiology or

Medicine for 1993 jointly to Richard J. Roberts and Phillip A.
Sharp for their discovery of split genes.
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a-a-Tropmyocin Tropmyocin pre-pre-
mRNAmRNA
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Gender inGender in Drosophila Drosophila

■ A percursor-RNA may often be
matured to mRNAs with alternative
structures. An example where
alternative splicing has a dramatic
consequence is somatic sex
determination in the fruit fly
Drosophila melanogaster.

■ In this system, the female-specific
sxl-protein is a key regulator. It
controls a cascade of alternative
RNA splicing decisions that finally
result in female flies.

■ Sex in  Drosophila is  largely
determined by  alternative  splicing
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Splicing and diseasesSplicing and diseases

■ Splicing errors cause
thalassemia

■ Thalassemia, a form of
anemia common in the
Mediterranian countries,
is caused by errors in the
splicing process.

■ Normal red blood cells
contain correctly spliced
beta-globin, an
important component in
hemoglobin that takes up
oxygen in the lungs.
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Information on alternativeInformation on alternative
splicing in public databases:splicing in public databases:

■ Swiss-Prot (protein) database is well curated,
but the information content is incomplete with
reference to alternative splicing and does not
allow for automatic retrieval of such entries.

■ Swiss-Prot entries just state the fact that a
particular protein is one of the products of
alternative splicing.

■ Some entries contain the information on the
limited number of isoforms.
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Clustering procedureClustering procedure

■ Gene families
multiple similar genes
exist due too duplication
and divergence of genes.

■ Short  similar fragments,
a lot of mutations

■ Alternative splicing
one gene but primary
transcript spliced in more
than one way

■ Relatively long identical
fragments

Similarity analysis of two sequences



Computational Biology @ SC 2000

A
B
C

~ 240 clusters of isoforms

Clustering procedureClustering procedure

■ 1,922 protein sequences were compared all-against-all
in order to find common sequence fragments.

■ The length of this fragment was a variable parameter in
the software. Various lengths were tested to cluster as
many variants of the same gene as possible, but to
avoid false clusters generated by too short fragments.
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ASDB statisticsASDB statistics
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ASDB usage duringASDB usage during
19991999
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Study of RegulationStudy of Regulation

■ No systematic surveys to address the
relative importance of such elements in the
regulation of alternative splicing.

■ It is unknown as to whether regulatory
words occur more frequently adjacent to
alternative exons than in the rest of the
genome.

■ It is not clear whether these elements
enhance splicing of only a limited set of
exons, or have a more general role.
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Alternative SplicingAlternative Splicing
RegulationRegulation

■ A number of genomic sequence regulatory
elements have been identified outside of
traditional splice sites.

■ The concept of splicing "enhancers" and
"silencers" that promote or inhibit splicing
at neighboring splice sites is well
established.

■ Many alternative exons are probably
regulated by a combination of silencers
and enhancers.
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Data CollectionData Collection

■ Automated processing of GenBank/Medline

■ Manual analysis of abstracts & articles

■ Collecting the sample
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BiSyCLESBiSyCLES Search Options Search Options

■ BiSyCLES searches in the two databases, then
establishes which of the retrieved entries are
linked

✔ Medline: +“alternative splicing,” tissue, muscle,
brain, neuro*, heart, regul*, enhancer, silencer

✔ Genbank: +”alternative splicing” +”complete
CDS”

■ Results:
✔ ~300 abstracts
✔ ~50 relevant papers
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BiSyCLESBiSyCLES: Biological System: Biological System
for Cross-Linked Entry Searchfor Cross-Linked Entry Search

■ GenBank contains genomic data but little annotation
■ Medline (PubMed) contains abstracts from journals but

no genomic data
■ NCBI’s Entrez system keeps links between related

entries in its databases
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Word CountingWord Counting

■ To calculate the confidence value of a
particular word we select random subsets of a
large dataset of constitutively spliced exons
(1,504 exons; Burset & Guigo, 1996) equal in
size to our alternative dataset.

■ We then calculate the fraction of these subsets
in which the word is over-represented at a
higher rate than in the alternative set.

■ (Over-representation is calculated as
difference of frequencies)
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       enhancers                           reference

       UGCAUG Huh & Hynes, 1994; Hedjran et al., 1997; Modafferi & Black, 1997;
Kawamoto, 1996; Carlo et al., 1996

      CUG repeat Ryan et al., 1996; Philips et al., 1998

      (A/U)GGG Sirand-Pugnet et al., 1995a

     GGGGCUG Carlo et al., 1996

       silencers  

      UUCUCU Chan & Black, 1995; Chan & Black, 1997; Ashiya & Grabowski, 1997

Known RegulatoryKnown Regulatory
ElementsElements
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Short summaryShort summary

■ In the simple cases of splicing, introns are
always introns and exons are always exons

■ During alternative splicing, within the same
RNA, sequences can be recognized as either
intron or exon under different conditions and
the concept of exons and introns becomes
rather empirical

■ RNAs are not spliced differently in the same
cell at the same time but in different cells or in
the same cell types at different times in
development or under different conditions

■ A variety of patterns of alternate splicing have
been observed.
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Evolutionarily conservedEvolutionarily conserved
non-coding DNA sequencesnon-coding DNA sequences

■ Discovering them in DNA sequence

■ Tools for their visualization

■ Biological importance
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 ~   5% coding
~ 95% non-coding

Gene A

Protein A

Non-Coding

Protein A'

Non-coding SequencesNon-coding Sequences
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 Information in Information in
SequenceSequence
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411

270
141Transcribed

Non-Transcribed

Introns
59%

< 1 k from gene
8%

  > 1 kb from gene
33%

      >   40 bp and > 90% 
OR >   60 bp and > 80% 
OR > 100 bp and > 70%

Conserved Human/MouseConserved Human/Mouse
Sequences in 830 kb RegionSequences in 830 kb Region
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Are most conserved
noncoding sequences

“functional” or are
they a product of

passive evolution?

90 Elements in 1 Megabase
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CNS-1IL 4 IL 13

Analysis of CNS-1Analysis of CNS-1

■ Present in other species:
✦ Cow (86%)

✦ Dog (81%)

✦ Rabbit (73%)

■ Genomic position conserved in human,
mouse, dog and baboon

■ Single copy in the human genome
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Identification 

Verification

Analysis

Evolutionarily ConservedEvolutionarily Conserved
Non-Coding SequencesNon-Coding Sequences
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Generate Human 5q31 YAC Transgenic Mice

KIF3 IL4 IL13 RAD50 IL5 IRF1 E3 E2 OCTN2
CR 1

LoxP
CR 1

LoxP
IL 4 IL 13

Functional Analysis ofFunctional Analysis of
CR 1CR 1
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VistaVista
(Visual Tool for Alignment)(Visual Tool for Alignment)
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ApoAIV ApoCIII ApoAI

Human/Rabbit

Human/Mouse

Apo AI Liver
Enhancer

Comparative Genomic Sequence Analysis ofComparative Genomic Sequence Analysis of
Human/Mouse/Rabbit Human/Mouse/Rabbit ApoAIApoAI, CIII, AIV Cluster, CIII, AIV Cluster
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http://www-http://www-gsdgsd..lbllbl..govgov/vista//vista/



Gene Regulatory Networks andGene Regulatory Networks and
Cellular ProcessesCellular Processes

Adam Arkin
APArkin@lbl.gov

LBNL
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Courtesy of IBM From: Wasserman Lab, Loyola

Asynchronous Digital Telephone Switching Circuit

Full knowledge of parts list
Full knowledge of  “device physics”
Full knowledge of  interactions

No one fully understands how this circuit works!!
Its just too complicated.

Designed and prototyped on a computer (SPICE analysis)
Experimental implementation fault tested on computer

Asynchronous Analog Biological Switching Circuit

Partial knowledge of parts list
Partial knowledge of  “device physics”
Partial knowledge of  interactions

No one fully understands how this circuit works!!
Its just too complicated.

We  a SPICE-like analysis for biological systems

Engineering of CellularEngineering of Cellular
CircuitryCircuitry
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In analogy to the steps necessary to allow design, control and diagnosis in electronics we must perform the
following (non-sequential) tasks:

Compile a list of parts that

 make up your system.  

Group subsets of parts based 
on function, physics and 
interactions 

Determine “device physics” 
for the parts and their 
interactions.

Create databases of the 
above and the “circuits” 
that are to be considered 
for analysis

Create quantitative 
simulations and analyses of 
the dynamics of 
complex networks.

A foundation for cellA foundation for cell
network analysisnetwork analysis
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Genome Sequence

Genes/Regulatory Sequence

Proteins/RNAs

Other Chemical Species

Biochemical Pathways/Dynamics

Cytomechanical/Spatial Processes

Cell Development/Signaling

Tissue Physiology/Development

Organism Behavior
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The challenge is to integrate data
from all levels to produce a
description of cellular function.

■ There are challenges in:
● Systematization and structuring

of data
● Serving and query this data
● Representing the data
● Building multiscale, multi-

resolution models
● Dynamic and static analysis of

these models

■ Pay-off in
● Industrial bioengineering
● Rational pharmaceutical design
● Basic biological understanding

Analysis of Cell FunctionAnalysis of Cell Function
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Genome Sequence

Genes/Regulatory Sequence

Proteins/RNAs

Other Chemical Species

Biochemical Pathways/Dynamics

Cytomechanical/Spatial Processes

Cell Development/Signaling

Tissue Physiology/Development

Organism Behavior

Complexities ofComplexities of
Cellular FunctionCellular Function
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Genome Sequence

Genes/Regulatory Sequence

Proteins/RNAs

Other Chemical Species

Biochemical Pathways/Dynamics

Cytomechanical/Spatial Processes

Cell Development/Signaling

Tissue Physiology/Development

Organism Behavior

Heterogeneity of Data

 mRNA expression data

Protein expression

Macromolecular Structure data

Molecular interaction data

Molecular concentration data

Temporal concentration data

Spatiotemporal imaging data

Mutation data

Kinetic/mechanistic data

Gross Phenotypic data

 Gene lengths/organization

Data are:

• Qualitative>Quantitative
• Collected at many levels
• Of heterogeneous

structure
• Of heterogeneous

availability

Challenge:

Optimal use of available
data to make predictions
about cell function and
failure.
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Genome Sequence

Genes/Regulatory Sequence

Proteins/RNAs

Other Chemical Species

Biochemical Pathways/Dynamics

Cytomechanical/Spatial Processes

Cell Development/Signaling

Tissue Physiology/Development

Organism Behavior

Tools for “multilevel” analysisTools for “multilevel” analysis

Finding Parts

Physical properties

Cellular networks

Assembled Genomes Polymorphisms

ORF Identification DNA Regulatory ID RNA Gene ID

mRNA Regulation mRNA Splicing RNA 2° Struct

Protein Sequence ID Homology Modeling RNA 3° Struct

Protein 3° Struct Protein Function ID RNA Function ID

Molecular Interaction
Prediction

Chromatin Structure
Macromolecular

Dynamics

Biochemical and Genetic Network Prediction

Metabolic/Biosynthetic
Analysis & Engineering

Signal Transduction
Analysis

Gene expression/network
Analysis

Cytomechanical 
Analysis

 Morphogenesis & 
Development

Homeostasis Cell-Cell 
Interactions

Tissue Mechanics
Cell Behavior &

Engineering
Organismal Behavior

Epidemiological/Ecological
Models

Cancer
Dynamics

Multi-organism function: e.g.
Infectious disease
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Why now?Why now?

■ Genome projects are providing a large (but partial) list of parts

■ New measurement technologies are helping to identify further
components, their interactions, and timings

✔ Gene microarrays
✔ Two-Hybrid library screens
✔ High-throughput  capillary electrophoresis arrays for DNA,

proteins and metabolites
✔ Fluorescent confocal imaging of live biological specimens
✔ High-throughput protein structure determination

■ Data is being compiled, systematized, and served at an unprecedented
rate

✔ Growth of GenBank and PDB > polynomial
✔ Proliferation of databases of everything from sequence to confocal

images to literature

■ The tools for analyzing these various sorts of data are also multiplying
at an astounding rate  
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SPICE Tools for Biology?SPICE Tools for Biology?

Bio/Spice: A Web-Servable,
Biologist-Friendly,  database,
analysis and simulation interface
was developed into a true beta
product.

Interfaces to ReactDB, MechDB,
and ParamDB.

With Kernel, performs basic:
flux-balance analysis,
stochastic and deterministic
kinetics,
Scientific Visualization of results.

Notebook/Kernel design optimized
for distributed computing.
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Local Kernel

Local Data

ReactDB MechDB

Center Data

Remote Kernel
Remote KernelRemote Kernel

Center 
Tool

Repository

ParamDB

BIO/SPICE

Components of Bio/SpiceComponents of Bio/Spice

Internet

Internet

Local
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gene

RNA

RNaseribosomeExponential distribution of
intertranscript times

Exponential distribution of
intertranscript times

• Successive competitions between RNase and ribosomes*

• Geometric distribution of number of proteins per transcript

• Successive competitions between RNase and ribosomes*

• Geometric distribution of number of proteins per transcript

*Yarchuk, O., Jacques, N., Guillerez, J. & Dreyfus, M. (1992), “Interdependence of translation, transcription and mRNA degradation in the
lacZ gene,” J. Mol. Biol. 226(3), 581-96

Stochastic MechanismsStochastic Mechanisms
in Gene Expressionin Gene Expression
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Some StochasticSome Stochastic
Cellular PhenomenaCellular Phenomena

■ Lineage commitment in human hemopoiesis
■ Random, bimodal eukaryotic gene transcription in

● Activated T cells
● Steroid hormone activation of mouse mammary tumor

virus
● HIV-1 virus

■ Clonal variation in:
● Bacterial chemotactic responses
● Cell cycle timing

■ E. coli type-1 pili expression
● Enhances virulence

■ Changing cell surface protein expression
● For immune response avoidance

■ Bacteriophage l lysis/lysogeny decision
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Where Noise Comes From?Where Noise Comes From?

■ Random environmental influences

■ Mutations

■ Asymmetric partitioning at cell division

■ Stochastic mechanisms in gene expression
● Stochastic timing of gene expression
● Random variation in time for signal propagation
● Random variation total protein production
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A simple exampleA simple example

 gene aPA

A

Promoter

Signal Protein
A2 AA

A *
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Timing uncertainty reduced by:
• Higher gene dosage
• Strong promoter
• Multiple promoters
• Lower effectivity threshold
• Slower cell growth

Timing uncertainty reduced by:
• Higher gene dosage
• Strong promoter
• Multiple promoters
• Lower effectivity threshold
• Slower cell growth

Time to Time to EffectivityEffectivity
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Signal Growth in ThreeSignal Growth in Three
CellsCells
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Monte Carlo simulation data

• One gene
• Growing cell, 45 minutes division time
• Average ~60 seconds between transcripts
• Average 10 proteins/transcript: 

• One gene
• Growing cell, 45 minutes division time
• Average ~60 seconds between transcripts
• Average 10 proteins/transcript: 
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This is approximately 1/3 of just 
the initiation of the sporulation 
program from .

There are over 100 proteins,
40 genes, 300 reactions for which
data is available.

The total data on just this process is a tens of Gb and it is incomplete.
Microarray and microscope data are added 100 Mb per week.
Model builders need to query this data and arrange it for simulation.
Simulations must be run under many different condition and hypotheses.

The total data on just this process is a tens of Gb and it is incomplete.
Microarray and microscope data are added 100 Mb per week.
Model builders need to query this data and arrange it for simulation.
Simulations must be run under many different condition and hypotheses.

Complexities of  Cellular FunctionComplexities of  Cellular Function
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The Need for AdvancedThe Need for Advanced
ComputingComputing

■ Data Handling:
The total data necessary for network analysis is huge. By nature it will
be distributed and heterogeneous
We need:

✔ Database standard and new query types
✔ Means of secure,fast transmission of information
✔ Means of quality control on data input

■ Tool integration:
✔ Centralization of computational biology tools and standards
✔ Ability to use tools together to generate good network hypotheses
✔ Good quality ratings on Tool outputs

■ Advanced Simulation Tools:
✔ Fast, distributed algorithms for dynamical simulation
✔ Mixed mode systems (differential, Markov, algebraic, logical)
✔ Spatially distributed systems
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http://http://cbcgcbcg..lbllbl..govgov


